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Abstract
The specific heat and entropy of (wurtzite) GaN are not well known
experimentally. The literature values for Cp (T > 298 K) are based on a
fit to an analytic function. The parameters include Cp (298 K) and the melting
temperature Tm, both of which were poorly known when the parameters were
first determined. The value of Cp (298 K) disagrees with the data measured
in the range 5–305 K. Our first-principles calculations allow the values of the
parameters to be established and lead to a more accurate prediction of specific
heat and entropy of GaN.

(Some figures in this article are in colour only in the electronic version)

Although the story of GaN can be traced as far back as the late 1930s (see, e.g., [1]), the
importance of this material for electronic applications has emerged only in the past decade
or so [2]. Despite the large volume of research done on GaN, its basic thermodynamic
properties are not well understood. In particular, there is a remarkably large discrepancy
between the only two published values of Cp (298 K). Koshchenko et al [3] measured a
GaN powder in the temperature range 5–305 K and found Cp (298 K) = 34.9 J mol−1 K−1,
while Kubaschewski and Alcock [4], who fitted Cp in the range 298–1800 K, predicted
Cp (298 K) = 40.8 J mol−1 K−1. Their high-temperature specific heat is widely used, for
example by Barin [5], Levinshtein et al [6] and Nipko et al [7].

Kubaschewski and Alcock used a functional form for Cp first proposed by Kelley [8]

Cp = a + b × 10−3T (1)

where the parameters a and b depend on the material. This formula predicts that the high-
temperature specific heat is a linear of function of temperature and ignores the pronounced
curvature at lower temperatures. In the case of GaN, the suggested values [4] are a =
38.1 J mol−1K−1, b = 8.96 J mol−1 K−2 and Cp (298 K) = 40.8 J mol−1 K−1 (measured [3]:
34.9 J mol−1 K−1). Today, this Cp is used by almost everybody.
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In order to extend this function, a T −2 curvature term was introduced for moderate
temperatures [4] (here in joules, not calories)

Cp = a + b × 10−3T + c × 105T −2. (2)

The parameters a J mol−1 K−1, b J mol−1 K−2 and c J K mol−1 should be obtained by
fitting this function to measured values of Cp above 298 K. If no such data are available,
empirical forms for the parameters are proposed (for GaN, in the equations below, n = 2) [4].
Kubaschewski and Alcock use Cp (298) and the melting temperature Tm:

a = Tm10−3{Cp (298) + 4.710n} − 1.248n105T −2
m − 9.04n

Tm10−3 − 0.298

b = 25.644n + 4.186n105T −2
m − Cp (298)

Tm10−3 − 0.298
c = −4.187n.

As abundantly illustrated in [4, 5], this procedure does predict accurate specific heats and
entropies for a wide range of materials. A melting temperature of 2500 ◦C is listed in [9].
Under normal N2 pressures, GaN sublimates at high temperatures and there would be nothing
left but a sapphire substrate by the quoted temperature. However, GaN has been grown at
high temperatures (up to 2000 K) under high gas pressures (up to 20 kbar) [10]. Nipko et al
[7] measured the phonon density of states (pDoS), used it to calculate Cv in the harmonic
approximation, and found a rather poor agreement above 298 K between their curve and the
fitted equation (1) [5]. This leaves one guessing as to the correct temperature dependence of
Cp for GaN.

In this letter, we argue that the parameters commonly used in equation (1) are inconsistent
at and above 298 K with both the low-temperature measurements [3] and with first-principles
calculations of Cv , even at temperatures at which Cv ≈ Cp. We begin with first-principles
calculations of the pDoS, at 0 K in the harmonic approximation. We use it to calculate the
Helmholtz free energy, specific heat and vibrational entropy of GaN (at constant volume).
Calculating vibrational spectra at T = 0 K and ignoring the temperature dependence of the
lattice constant is justified at moderate temperatures and greatly simplifies the calculations [11].
Although our Cv does not match Cp at high temperatures, there is evidence that it is quite good
up to at least 800–900 K for a range of materials [12]. The fit of Cp (equation (2)) to our
calculated specific heat gives new values for a, b, and c, and leads to more accurate Cp and
vibrational entropy for GaN.

Our results are obtained from self-consistent, first-principles molecular-dynamics
simulations based on local density-functional theory. The calculations are performed with the
SIESTA code [13, 14]. The exchange–correlation potential is that of Ceperley–Alder [15]
as parameterized by Perdew and Zunger [16]. Norm-conserving pseudopotentials in the
Kleinman–Bylander form [17] remove the core regions from the calculations. The basis
sets for the valence states are linear combinations of numerical atomic orbitals of the Sankey
type [18–20], generalized to be arbitrarily complete with the inclusion of multiple-zeta orbitals
and polarization states [13]. In the present calculations, double-zeta sets are used except for
Ga, which has a set of polarization functions. The charge density is projected on a real-space
grid with an equivalent cutoff of 150 Ryd to calculate the exchange–correlation and Hartree
potentials.

The crystal is represented by a Ga48N48 periodic cell. The k-point sampling is limited to
k = 0 for the calculation of the dynamical matrix (DM). The calculated crystal parameters
a = 3.185 Å, c = 5.245 Å, bulk modulus 224.0 GPa, and � phonon frequency 769 cm−1

compare well with the experimental values [9] a = 3.189 Å and c = 5.125 Å, 210.0 GPa and
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Figure 1. Calculated pDoS of wurtzite GaN.

742 cm−1. The T = 0 K harmonic optical phonon is 3–4% off the anharmonic one measured
at 300 K [9]. Note that while total energies are sensitive to the k point sampling, the vibrational
frequencies are remarkably reliable with only k = 0. Indeed, our predictions [21] of some
70 known LVMs in Si have shown that the frequencies calculated this way have an average
error relative to experiment of the order of 2% (less for highly harmonic modes). The matrix
elements of the (harmonic) DM are extracted at T = 0 K from the derivatives of the density
matrix relative to nuclear coordinates, using the perturbative approach developed by Gonze
et al [22, 23] and implemented into SIESTA by Pruneda et al [21].

The eigenvalues of the DM are the 288 normal-mode frequencies ωi (i = 1, 2, . . . , 3N).
The Fourier transform of the DM is then evaluated at many k points along high-symmetry
directions of the cell’s Brillouin zone. Each k point generates another set of frequencies. The
resulting pDoS is shown in figure 1. The measured one-photon excitation spectrum consists
of two broad bands centred at 185.5 and 314.6 cm−1 (23 and 39 meV) corresponding to the
acoustic and the first group of optical phonons, followed by a gap from 363 to 524.3 cm−1

(45–65 meV), then two sharp bands of upper optical modes at about 605.0 and 693.7 cm−1 (75
and 86 meV) [7]. The calculated pDoS (figure 1) has two broad bands centred at about 150
and 342 cm−1 (20.8 and 42.4 meV) followed by a gap from 370 to 595 cm−1 (45.9–73.8 meV),
then two sharp bands at about 651 and 732 cm−1 (80.7 and 90.7 meV).

In the harmonic approximation, the Helmholtz free energy is given by [24]

Fvib.(T ) = kBT
∫ �

0
ln{sinh(x/2)}g(ω) dω (3)

where x = h̄ω/kBT and kB is the Boltzmann constant. Here, the pDoS g(ω) is normalized so
that

∫
g(ω) dω = 3N , where N is the number of atoms. Fvib.(T = 0 K) is the total zero-point

energy. From Fvib.(T ), the vibrational entropy and specific heat at constant volume are

Svib. = −
(

∂ Fvib.

∂T

)
V

, Cv = −T

(
∂2 Fvib.

∂T 2

)
V

. (4)

We use this Cv to determine the coefficients a, b, and c in equation (2). Since this function
is valid only above 298 K and Cv is close to Cp only at moderate temperatures, we perform
the fit in the range 298–700 K. This leads to Cp J mol−1 K−1

Cp = 41.40 + 9.12 × 10−3T − 9.58 × 105T −2. (5)
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Figure 2. Calculated Cv (solid curve) versus the measured [3] C p (circles), equation (1)
(squares [5]), and equation (5) (dashed curve).
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Figure 3. Svib. calculated from first principles (solid curve) versus the values integrated from
experiment [3] (circles), equation (1) (squares [5]), and equation (5) (dashed curve).

Figure 2 shows the comparison between Cv calculated from first-principles in the harmonic
approximation (it is very close to that in [7]), Cp measured at low temperatures [3], Kelley’s
fitted functional for Cp with parameters from [4–6] and from our own fit, equation (5). Note
that for ∼400 < T < 1000 K, the original fit [4, 5] for Cp predicts values that are smaller than
the harmonic Cv , which cannot be correct. Equation (5) (based on Cv) possibly underestimates
somewhat the true Cp of GaN, which should ultimately be obtained experimentally.

We calculated Svib. in two different ways. The derivative of our Helmholtz free energy
provides the entropy from first principles in the harmonic approximation. We also used our
fitted Cp and integrated Cp/T . The constant of integration was fixed from the measured [3]
value of Svib.(298). The results are shown in figure 3.
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In conclusion, we have calculated from first principles the pDoS, Helmholtz free energy,
specific heat and vibrational entropy at constant volume of wurtzite GaN in the harmonic
approximation. Our Cv matches the measured Cp in the temperature range 5–305 K and
the Cv obtained by Nipko et al from their measured pDoS. However, none of these specific
heats matches the most commonly used Cp in the literature. We extract new values for the
parameters in the empirical functional form of Cp, and predict the specific heat and vibrational
entropy of GaN at constant pressure above room temperature. Our calculated Cv is an excellent
approximation to Cp below 298 K.
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Energy Laboratory, and the Alexander von Humboldt Foundation. Many thanks to Texas
Tech’s High Performance Computer Center for generous amounts of computer time.
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